

Course Syllabus

1	Course title	Thermal Physics
2	Course number	0332341
3	Credit hours	3
5	Contact hours (theory, practical)	3 Theory
4	Prerequisites/Co-requisites	0302261
5	Program title	Physics
6	Program code	0302
7	Awarding institution	The University of Jordan
8	School	Science
9	Department	Physics
10	Course level	3 rd year
11	Year of study and semester(s)	1 st Semester 2022/2023
12	Other department(s) involved in teaching the course	none
13	Main teaching language	English
14	Delivery method	□ Face to face learning □ Blended □ Fully online
15	Online Platforms(s)	$\square Moodle \square Microsoft Teams \square Skype \square Zoom$
16	Issuing/Revision Date	November 7 2022
10	issuing ACTISION Date	

مركز الاعتماد 17 Course Coordinator:

Name: Prof. Hassan Juwhari

Contact hours:

10:00 am -11:30 am Monday Wednesday & 10:30 am -11:30 am Sunday Tuesday Thursday

Office number: Physics 203

Phone number: Ext: 22062

Email: h.juwhari@ju.edu.jo

18 Other instructors:

Name:
Office number:
Phone number:
Email:
Contact hours:
Name:
Office number:
Phone number:
Email:
Contact hours:

19 Course Description:

As stated in the approved study plan.

Binary Model System; Entropy; Temperature; Thermal Equilibrium; Laws Of Thermodynamics; Boltzmann Distribution; Thermal Radiation; Chemical Potential; Gibbs Distribution; Ideal Gas; Fermi-Dirac And Bose-Einstein Distributions; Thermodynamic Functions; Heat And Work; Heat Engines; Phase Transformations; Van Der Waals' Equation Of State; Kinetic Theory.

20 Course aims and outcomes:

مـركـز الاعتماد وضمان الجودة

A- Aims: *This introductory course aims at giving the physics students the basics of Thermal Physics*.

B- Students Learning Outcomes (SLOs):

Upon successful completion of this course, students will be able to:

	SLO (1)	SLO (2)	SLO (3)	SLO (4)
SLOs				
SLOs of the				
course				
1	Introduce the			
	basic postulates of			
	Statistical			
	Mechanics and			
	apply them to			
	basic model			
	systems.			
2	Introduce the			
	concepts of			
	Temperature and			
	Entropy.			
3	Derive the			
	Boltzmann and			
	Gibbs			
	Distributions for			
	classical and			
	quantum			
	mechanical			
	systems.			
4	Calculate the			
	average			
	occupation of the			
	energy states of a			
	large collection of			
	non-interacting			
	atoms			
5	Use the techniques			
	of statistical			
	mechanics and			
	thermodynamics			
	to solve problems.			

6	Describe the	٦
	thermal properties	
	(e.g. specific heat	
	and distribution	
	functions) of	
	generic materials	
	(e.g. insulators,	
	metals,	
	paramagnets, and	
	Fermi and Bose	
	systems) based on	
	simple models of	
	their basic	
	constituents.	
	Introduce some	
7	thermodynamic	
	functions such as	
	Free Energy and	
	Chemical	
	Potential.	
	Explain	
8	thermodynamic	
	concepts,	
	including the ideas	
	of reversibility,	
	thermal	
	equilibrium under	
	various conditions	
	and entropy.	
9	Explain the	
	concepts of	
	statistical	
	mechanics.	

مركز الاعتماد 21. Topic Outline and Schedule: وضمان الجودة

Week	Lecture	Торіс	Intended Learning Outcome	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous / Asynchronous Lecturing	Evaluation Methods	Resources
1		Binary Model System; Average Values	1,	Face-to-Face				
2		Fundament al Assumptio n; Probability ; Thermal Equilibriu m; Temperatur e; Entropy; Laws of Thermodyn amics	1,2,4	Face-to-Face				
3		Boltzmann Factor; Pressure; Helmholtz Free Energy; Ideal Gas: A First Look	1,3,4,5	Face-to-Face				
4		Fermi- Dirac Distributio n Function; Bose- Einstein Distributio n Function;	1,6	Face-to-face				

	Classical Limit				
5	Planck Distributio n Function; Plank Law and Stefan- Boltzmann Law; Phonons in Solids: Debye Theory	1,5,6	Face-to-face		
6	Definition of Chemical Potential; Gibbs Factor and Gibbs Sum	1,7	Face-to-face		
7	Ideal Gas	1,2,8	Face-to-face		
8	Fermi and Bose Gases	1,6	Face-to-face		
9	Heat & Work	1,8	Face-to-face		

22 Evaluation Methods:

Home works+ Quiz + Assay + Exams

23 Course Requirements

(e.g: Each student must have access to a computer, internet connection, account on a specific software/platform:

24 Course Policies:

8

A- Attendance policies: No more than 20% of classes can be missed.

B- Absences from exams and submitting assignments on time: Only students with acceptable excuses will be eligible for a makeup exam or late assignment submission.

C- Health and safety procedures:

D- Honesty policy regarding cheating, plagiarism, misbehavior: *We all follow an honor system during the whole course. All the universities laws will be applied to rules breakers.*

E- Grading policy: The course grading follows the guidelines of the graduate school.

20% Assignments and Assay + 30% midterm Exam (Best out of two) + 50% Final Exam

F- Available university services that support achievement in the course:

Library + *Computer Facilities*

25 References:

A- Required book(s), assigned reading and audio-visuals:

"Thermal Physics" by **Charles Kittel & Herbert Kromer** (2^{2d} edition or any newer one)

B- Recommended books, materials, and media:

Collections of references introduced by the authors at the introduction of their textbook including those for various subjects on Thermodynamics, Statistical Mechanics, Kinetic theory, Phase transitions, and Solid State Physics

26 Additional information:

Name of Course Coordinator: Dr. Hassan K. Juwhari Signature: hkj Date: Nov. 7th 2022-----

مرکـز اا	Head of Curriculum Committee/Department:	Signature:	
وضمان TY ASSURANCE CENTER	<u></u>		
	Head of Department:	Signature:	
Head	of Curriculum Committee/Faculty:	Signature:	
		-	
Dean: Signature:			
		-	